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Abstract. There is a remarkable connection between the number of quantum states of conformal theories
and the sequence of dimensions of Lie algebras. In this paper, we explore this connection by computing
the asymptotic expansion of the elliptic genus and the microscopic entropy of black holes associated with
(supersymmetric) sigma models. The new features of these results are the appearance of correct prefactors
in the state density expansion and in the coefficient of the logarithmic correction to the entropy.

1 Introduction

The combinatoric identities with which we shall be con-
cerned play an important role in a number of physical mod-
els. In particular, such identities can be associated with the
elliptic genus partition function of supersymmetric sigma
models on the N -folds and play a special role in string
and black hole dynamics. Before entering into the specific
problem, we would like to introduce the reader to some
formal aspects found in the mathematical literature [1,2],
giving two examples in string theory which we shall use
later on.

Let us first discuss CY3-folds: we consider type IIA
string theory compactified on Calabi–Yau three-folds CY3.
Recently, black holes have been studied in the N = 2 super-
gravity corresponding to type IIA strings. This theory can
also be viewed as M-theory on CY3×S1 and extremal black
holes are microscopically represented by fivebranes wrap-
ping on P ×S1, where P is a four-cycle, P ⊂ CY3. The mi-
croscopic entropy of the fivebranehas beendetermined from
a two-dimensional (0,4) sigma model, whose target space
includes the fivebrane moduli space [3]. We are interested in
the CY3 geometry. The charge forms are in one to one corre-
spondence with the elements of Hq(CY3,L⊗Ωp), where L
is the line bundle for which c1(L) = [FCY ]; c1(L) is the first
Chern class of L. Hq(CY3,L ⊗ Ωp) vanishes for q > 0 and
large c1(L). One can compute dimH0(CY3,L⊗Ωp) using
the Riemann–Roch formula, and the result is (see also [4])

h0 = dimH0(CY3,L)
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4
c2 · P +

χ

2
,

h3 = dimH0(CY3,L ⊗ Ω3) = h0. (1.1)

Here ck are the kth Chern classes, χ is the Euler character-
istic and P is a four-cycle of a manifold (for more notation
and details see for example [3, 4]).

Our goal is to compute a partition function Z(q) �
Tr [OqN ] in a black hole geometry, where the trace is cal-
culated over the multibrane Hilbert space and O is an
appropriate operator insertion. We have to count the mul-
tiparticle primaries choosing a basis of states. Actually the
counting of configurations is in one to one correspondence
to the counting of states for conformal field theory with∑

(even j) hj bosons and
∑

(odd j) hj fermions and total mo-
mentum N . The number of states would correspond to the
coefficient of D(n) in the expansion of the generating func-
tion

Z = TrqN =
∏
n

(1 + qn)
∑

(odd j) hj

(1 − qn)
∑

(even j) hj
=
∑

n

D(n)qn. (1.2)

Now, let us have a look at the supersymmetric sigma
model on N -folds. That is, our next example is a sigma
model on the N -fold symmetric product SNX of a Kähler
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manifold X, which is the SNX = XN/SN orbifold space.
SN is the symmetric group of N elements. The Hilbert
space of an orbifold field theory can be decomposed into
twisted sectors Hγ , that are labelled by the conjugacy
classes {γ} of the orbifold group SN [5, 6]. For a given
twisted sector one can keep the states invariant under the
centralizer subgroupΓγ related to the elementγ. LetHΓγ

γ be
an invariant subspace associated with Γγ ; the total orbifold
Hilbert space takes the form H(SNX) = ⊕{γ}HΓγ

γ . One
can compute the conjugacy classes {γ} by using a set of
partitions {Nn} of N , namely

∑
n nNn = N , where Nn is

the multiplicity of the cyclic permutation (n) of n elements
in the decomposition of γ: {γ} =

∑
j=1(j)

Nj . For this
conjugacy class the centralizer subgroup of a permutation
γ is Γγ = SN1 ⊗j=2 (SNj >�Z

Nj

j ) [6], where each subfactor
SNn

and Zn permutes the Nn cycles (n) and acts within
one cycle (n) correspondingly. Following the lines of [6] we
may decompose each twisted sector HΓγ

γ into a product over
the subfactors (n) of Nn-fold symmetric tensor products,
HΓγ

γ = ⊗n>0S
NnHZn

(n), where SNH ≡ (⊗NH)SN .
It has been shown that the partition function for (sub)

Hilbert space of a supersymmetric sigma model coincides
with the elliptic genus [7]. If χ(HZn

(n); q, y) admits the ex-
tension χ(H; q, y) =

∑
m≥0,� G(nm, �)qmy�, the following

result holds [6, 8, 9]:

∏
m≥0,�

(
1 − pqmy�

)−G(nm,�)
=
∑
N≥0

pNχ(SNHZn

(n); q, y),

W (p; q, y) =
∏

n>0,m≥0,�

(
1 − pnqmy�

)−G(nm,�)

=
∑
N≥0

pNχ(SNX; q, y), (1.3)

p = e[ρ], q = e[τ ], y = e[z], and e[x] ≡ exp[2πix]. Here ρ
and τ determine the complexified Kähler form and complex
structure modulos of T

2 respectively, and z parametrizes
the U(1) bundle on T

2. The Narain duality group SO(3, 2,
Z) is isomorphic to the Siegel modular group Sp(4, Z) and it
is convenient to combine the parameters ρ, τ and a Wilson
line modules z into a 2 × 2 matrix belonging to the Siegel
upper half-plane of genus two,

Ξ =
(

ρ z

z τ

)
,

with Im ρ > 0, Im τ > 0, det Im Ξ > 0. The group Sp(4, Z)∼= SO(3, 2, Z) acts on the Ξ matrix by fractional linear
transformations Ξ → (AΞ + B)(CΞ + D)−1. Note that
for a Calabi–Yau space the χ-genus is a weak Jacobi form of
zero weight and index d/2 [10]. For q = 0 the elliptic genus
reduces to a weighted sum over the Hodge numbers, namely
χ(X; 0, y) =

∑
j,k(−1)j+kyj− d

2 hj,k(X). For the trivial line

bundle the symmetric product
∏

n>0 (1 − pn)−χ(X) (see
Sect. 3 for details) can be associated with the simple par-
tition function of a second quantized string theory.

This paper is organized as follows. In Sect. 2 we discuss
the homological method of the relationship between Lie
algebras and combinatorial identities following the lines
of [1, 11]. The asymptotic expansion of the elliptic genus
and the microscopic entropy of a black hole associated with
a supersymmetric sigma model are given in Sect. 3. The
problem of microscopically computing the entropy of black
holes has already been solved. In the present paper the new
features are the appearance of correct prefactors in the state
density expansion and in the coefficient of the logarithmic
correction to the entropy. The fact that the computation of
the number of states for conformal theories, and therefore
the compution of the entropy of black holes, would be
connected to the sequence of dimensions of Lie algebras is
quite intriguing, and we finish this paper with a discussion
of this point.

2 Combinatorial identities
and graded Lie algebras

One of the universal methods of obtaining combinatorial
identities of the types of (1.2) and (1.3) is the Euler–
Poincaré formula associated with a complex consisting of
finite-dimensional linear spaces. In this section we briefly
discuss the homological aspects of identities following the
lines of [1, 11]. Our remarks here are designed to provide
the readers with a brief introduction to these identities and
to indicate how it could be derived from results of (graded)
Lie algebras. The relationship between combinatorial iden-
tities and Lie algebras was discovered by Macdonald [12]
(on the whole all combinatorial identities are related to Lie
algebras). In this section we shall apply Euler–Poincaré for-
mula to chain complexes of Lie algebras.

Let gbe a finite-dimensional Lie algebra and letCq(g) be
the space of q-dimensional chain of g. The Euler–Poincaré
formula gives∑

q

(−1)qc(m)
q =

∑
q

(−1)qh(m)
q , m ∈ N,

c(m)
q = dimC(m)

q (g), (2.1)

h(m)
q = dimH(m)

q (g),

where Hq(g) is the homology of the complex {Cq(g)}.
Introducing the x variable we can rewrite this sequence

of identities as a formal power series:∑
q,m

(−1)qc(m)
q xm =

∑
q,m

(−1)qh(m)
q xm

=
∏
j

(1 − xj)dim g(j) . (2.2)

Therefore, in order to get the identity in its final form the
homology H

(m)
q (g) has to be computed.

Let us suppose that the Lie algebra g possesses a poly-
grading g = ⊕g(m1,...,mk). The following result holds, due to
Fuks [1], Theorem 3.2.3.
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Theorem 1 Let

g = ⊕m1≥0,...,mk≥0
m1+...+mk>0

g(m1,...,mk)

be the (poly)graded Lie algebra satisfying dim g(m1,...,mk) <

∞. If dim H
(m1,...,mk)
q = h

(m1,...,mk)
q , the formal power se-

ries in x1, . . . , xk satisfies the following identity

∏
j1,...,jk

(
1 − xj1

1 . . . xjk

k

)dim g(m1,...,mk)

=
∑

q,m1,...,mk

(−1)qhm1,...,mk
q xm1

1 . . . xmk

k . (2.3)

We can apply Theorem 1 to compute the Lie algebras
homology which has been carried out in the papers [13,14].
Assume that a Hermitian or Euclidean metric can be cho-
sen in every space g(λ). As a consequence, all the spaces
Cq

(λ)(g) acquire a metric and one can identify Cq
(λ)(g) with

[Cq
(λ)(g)]′, i.e. with C

(λ)
q (g). The homology of the Lie al-

gebras can be entirely computed by using the Laplace op-
erator Lq

(λ). Every element of the space Hq
(λ)(g) can be

represented by an unique harmonic cocycle from Cq
(λ)(g)

(see, for example, [1]). It means that there is a natural iso-
morphism:

Ker Lq
(λ) = Hq

(λ)(g). (2.4)

As an example, let us briefly consider an application
of Theorem 1 to graded Lie subalgebras N+(gA) of Kac–
Moody algebras. The algebra N+(gA) is constructed from
the Cartan matrix A. The matrix A = ||aij ||ni,j=1 is square
integer, aij = 2, i, j = 1, 2, . . . , n, aij ≤ 0 for i �= j, and
for which there exist positive numbers b1, . . . , bn, such that
the matrix bA = ||biaij || is symmetric. The Kac–Moody
algebra gA with Cartan matrix A is the complex Lie algebra
with generators e1, . . . , en. We can construct Z

n-grading
in the Kac–Moody algebra gA, choosing the appropriate
form of {deg ej}n

j=1. The following theorem occurs, also
due to Fuks [1].

Theorem 2 Equation (2.3) applied to graded Kac–Moody
algebras gives

∏
k1≥0,...,kn≥0
k1+...+kn>0

(1 − xk1
1 . . . xkn

n )dim gA
(k1,...,kn)

=
∑

Q(j1,...,jn)=0

L(j1, . . . , jn)xj1
1 . . . xjn

n , (2.5)

where L(j1, . . . , jn) are certain coefficients.

The identities which correspond to the N+(gA) algebra
with Cartan matrices of rank n−1 with negative eigenval-
ues are usually called Macdonald identities. Combinatorial
identities related to Kac–Moody algebras with other Car-
tan matrices are also of interest as we will now see.

3 Asymptotics of generating functions

One can apply the Theorem 1 to the Z
n-grading of the

sl(n, C) subalgebras of Lie algebras together with Theorem
2. It gives the Macdonald identities series containing the
Gauss–Jacobi identity (see for details [1]):

∞∏
m=1

(1 − xm
1 xm

2 )(1 − xm
1 xm−1

2 )(1 − xm−1
1 xm

2 )

= 1 +
∞∑

k=1

(−1)k

(
x

k(k+1)
2

1 x
k(k−1)

2
2 + x

k(k−1)
2

1 x
k(k+1)

2
2

)
.

We can make use of trivial transformations of the Gauss–
Jacobi identity. It reduces to the series

∞∏
n=1

(1 − xn)3 =
∞∑

k=1

(−1)k−1(2k − 1)x
k(k−1)

2 , (3.1)

which is the cube of the “Euler function”
∏∞

n=1(1 − xn).
Interesting combinatorial identities may be obtained by ap-
plying Theorem 1 to graded Lie algebras, but only for some
chosen values of the power k can the function

∏∞
n=1(1−xn)k

be presented by a power of Euler function. Some arguments
on “distinguished powers” (which is in correspondence to
the sequence of dimensions of Lie algebras ) the reader can
find in [15] (Sects. 3 and 4).

Since the coefficient D(n) in the expansion of the gener-
ating function in its final form is not always known, we shall
simplify the calculations and apply its asymptotic limit.
The multi-component version of the classical generating
functions has the form

G±(z) =
∏

n∈Zp/{0}
[1 ± exp (−zωn(a,g))]±σ

, (3.2)

where Re z > 0, σ > 0, ωn(a,g) is given by ωn(a,g) =(∑
� a�(n� + g�)2

)1/2, g�, and a� are some real numbers (for
arbitrary spectral formsω2

n see, for example, [16]). The total
number of quantum states can be described by the functions
D±(n) defined by K±(t) =

∑∞
n=0 D±(n)tn ≡ G±(− log t),

where t < 1, and n is a total quantum number. The p-
dimensional Epstein zeta function Zp |gf | (z, ϕ) associated
with the quadratic form ϕ[a(n + g)] = (ωn(a,g))2 for
Re z > p is given by the formula

Zp

∣∣∣∣g1 . . . gp

f1 . . . fp

∣∣∣∣ (z, ϕ)

=
∑
n∈Zp

′ (ϕ[a(n + g)])− z
2 e2πi(n,f), (3.3)

where (n, f) =
∑p

i=1 nifi, fi are real numbers and the
prime on

∑ ′ means that one should omit the term n = −g
if all the gi are integers. For Re z < p, Zp |gf | (z, ϕ) is
understood to be the analytic continuation of the right hand
side of (3.3). Note that Zp |gf | (z, ϕ) is an entire function
in the complex z-plane except for the case when all the
fi are integers. In this case Zp |gf | (z, ϕ) has a simple pole
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at z = p with residue A(p) = 2πp/2[(deta)1/2Γ (p/2)]−1,
which does not depend on the winding numbers g�.

By means of the asymptotic expansion of G±(z) for
small z, one arrives at a complete asymptotic limit of
D±(n) [17–19]:

D±(n)n→∞ = C±(p)n
2σZp|g0|(0,ϕ)−p−2

2(1+p)

× exp
{

1 + p

p
[σA(p)Γ (1 + p)ζ±(1 + p)]

1
1+p n

p
1+p

}

×[1 + O(n−k±)], (3.4)

C±(p) = [σA(p)Γ (1 + p)ζ±(1 + p)]
1−2σZp|g0|(0,ϕ)

2p+2

× exp
[
σ(d/dz)Zp |g0| (z, ϕ)|(z=0)

]
[2π(1 + p)]1/2 , (3.5)

where ζ−(z) ≡ ζR(z) is the Riemann zeta function,

ζ+(z) = (1 − 21−z)ζR(z),

k± = p/(1 + p) min (C±(p)/p − δ/4, 1/2 − δ) ,

and 0 < δ < 2/3.

3.1 Asymptotics of the elliptic genus

If y = e[z] = 1 then the elliptic genus degenerates to the
Euler number or Witten index [20]. For the symmetric
product this gives the following identity:

W (p) =
∑
N≥0

pNχ(SNX) =
∏
n>0

(1 − pn)−χ(X) . (3.6)

Thus this character is almost a modular form of weight
−χ(X)/2. Equation (3.6) is similar to the denominator
formula of a (generalized) Kac–Moody algebra [21]. A de-
nominator formula can be written as follows:∑

σ∈W
(sgn(σ)) eσ(v) = ev

∏
r>0

(1 − er)mult(r)
, (3.7)

where v is the Weyl vector, the sum on the left hand side
is over all elements of the Weyl group W, the product on
the right hand side runs over all positive roots (one has the
usual notation of root spaces, positive roots, simple roots
and Weyl group, associated with the Kac–Moody algebra)
and each term is weighted by the root multiplicity mult(r).
For the su(2) level, for example, an affine Lie algebra (3.7) is
just the Jacobi triple product identity. For generalized Kac–
Moody algebras there is the following denominator formula:

∑
σ∈W

(sgn(σ)) σ

(
ev
∑

r

ε(r)er

)

= ev
∏
r>0

(1 − er)mult(r)
, (3.8)

where the correction factor on the left hand side involves
ε(r) which is (−1)n if r is the sum of n distinct pairwise
orthogonal imaginary roots and zero otherwise.

The logarithm of the partition function W (p; q, y) is
the one-loop free energy F (p; q, y) for a string on T

2 × X:

F (p; q, y)

= logW (p; q, y) = −
∑

n>0,m,�

G(nm, �)log
(
1 − pnqmy�

)

=
∑

n>0,m,�,k>0

1
k

G(nm, �)pknqkmyk�

=
∑
N>0

pN
∑

kn=N

1
k

∑
m,�

G(nm, �)qkmyk�. (3.9)

The free energy can be written as a sum of Hecke operators
TN acting on the elliptic genus of X [6,21,22]: F (p; q, y) =∑

N>0 pNTNχ(X; q, y).
The goal now is to calculate an asymptotic expansion

of the elliptic genus χ(SNX; q, y). The degeneracies for the
sigma model are given by the Laurent inversion formula:
χ(SNX; q, y) = (2πi)−1

∮
W (p, q, y)p−N−1dp, where the

contour integral is taken on a small circle around the origin.
Let the Dirichlet series

D(s; τ, z) =
∑

(n,m,�)>0

∞∑
k=1

e[τmk + z�k]G(nm, �)
nsks+1 (3.10)

converge for 0 < Re s < α. We assume that the series (3.10)
can be analytically continued in the region Re s ≥ −C0
(0 < C0 < 1) where it is analytic except for a pole of
order one at s = 0 and s = α, with residue Res[D(0; τ, z)]
and Res[D(α; τ, z)] respectively. Besides, let D(s; τ, z) =
O(| Im s|C1) uniformly in Re s ≥ −C0 as | Im s| → ∞,
where C1 is a fixed positive real number. The Mellin–Barnes
representation of the function F (t; τ, z) has the form

M̂ [F ](t; τ, z)

=
1

2πi

∫
Re s=1+α

t−sΓ (s)D(s; τ, z)ds. (3.11)

The integrand in (3.11) has a first order pole at s = α and
a second order pole at s = 0. Shifting the vertical contour
from Re s = 1+α to Re s = −C0 (this procedure is permis-
sible) and making use of the residue theorem one obtains

F (t; τ, z)

= t−αΓ (α) Res[D(α; τ, z)] + lim
s→0

d
ds

[sD(s; τ, z)]

−(γ + log t) Res[D(0; τ, z)]

+
1

2πi

∫
Re s=−C0

t−sΓ (s)D(s; τ, z)ds, (3.12)

where t ≡ 2π(Im ρ− i Re ρ). The absolute value of the inte-
gral in (3.12) canbe estimated tobehave asO ((2π Im ρ)C0

)
.

In the half-plane Re t > 0 there exists an asymptotic
expansion for W (t; τ, z) uniformly in | Re ρ| for | Im ρ| →
0, |arg(2πiρ)| ≤ π/4, | Re ρ| ≤ 1/2 and given by
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log W (t; τ, z)

= Res[D(α; τ, z)]Γ (α)t−α − Res[D(0; τ, z)]logt

−γ Res[D(0; τ, z)] + lim
s→0

d
ds

[sD(s; τ, z)]

+O (|2π Im τ |C0
)
. (3.13)

Repeating the above, we obtain the result (3.4) and (3.5)
with the obvious modifications:

{n; p} =⇒ {N ; α},

D±(n) =⇒ χ(SNX; τ, z),

and

σZp |g0| (0, ϕ) =⇒ Res[D(0; τ, z)],

σA(p)ζ±(1 + p)Γ (1 + p)

=⇒ Res[D(α; τ, z)]Γ (1 + α),

σ lim
z→0

d
dz

Zp |g0| (z, ϕ) (3.14)

=⇒ lim
s→0

d
ds

[sD(0; τ, z)] − γ Res[D(0; τ, z)],

where γ is the Euler constant. These results have an uni-
versal character for all elliptic genera associated to Calabi–
Yau spaces.

Let us note the following. We go into some facts related
to orbifoldized elliptic genus of N = 2 superconformal
field theory. The contribution of the untwisted sector to
the orbifoldized elliptic genus is the function χ(X; τ, z) ≡
Φ00(τ, z), whereas

φ

(
aτ + b

cτ + d
,

z

cτ + d

)
= Φ00(τ, z)e

[
rcz2

cτ + d

]
,

(
a b

c d

)
∈ SL(2, Z), (3.15)

r = d/2. The contribution of the twisted µ-sector projected
by ν is [8]

Φµν(τ, z)

= Φ00(τ, z + µτ + ν)e
[
d(µν + µ2τ + 2µz)/2

]
,

µ, ν ∈ Z.

For some suitable integers P and � the orbifoldized elliptic
genus can be defined by

φ(τ, z)orb
def=

1
�

�−1∑
µ,ν=0

(−1)P (µ+ν+µν)Φµν(τ, z). (3.16)

Using the transformation properties of the function
Φµν(τ, z) one can obtain the asymptotic expansion for the
orbifoldized elliptic genus. In fact we can introduce a pro-
cedure, starting with the expansion of the elliptic genus of
the untwisted sector, to compute the asymptotics of the
elliptic genus of the twisted sector.

3.2 The microscopic entropy

Results of the previous sections can be used to calculate the
ground state degeneracy of systems with quantum numbers
of certain states of extreme black holes. We can compute the
asymptotics of the functions G±(z), χ(SNX; τ, z) associ-
ated with a gas of species of massless quanta. In the context
of superstring dynamics, for example, the asymptotic state
density gives a precise computation of the entropy of a black
hole. The black hole entropy S(N) becomes

S(N) = log χ(SNX; τ, z) � S0 + A(α) log(S0)

+(Const.),

A(α) = (2α)−1{2 Res[D(0; τ, z)] − 2 − α}. (3.17)

The leading term in (3.17) has the form

S0 = B(α)Nα/(1+α), (3.18)

B(α) =
1 + α

α
{Res[D(α; τ, z)]Γ (1 + α)}1/(1+α) .

A(α) is the coefficient of the logarithmic correction to the
entropy; it depends on the complex dimension d of a Kähler
manifold X.

In conclusion, we note that the asymptotic state density
at leveln (n � 1) for fundamental p-branes compactified on
the manifold with topology T

p ×R
d−p has been calculated

within the semiclassical quantization scheme in [17, 19].
In string theory, in the case of zero modes, the embed-
ding spacetime dependence can be eliminated [23], and
the coefficient of the logarithmic correction A(p) becomes
−3/2, which agrees with the results obtained in the spin
network formalism.

To summarize, our results can be used in the con-
text of the brane method to calculate the ground state
degeneracy of systems with quantum numbers of certain
BPS extreme black holes, for example, the BPS black hole
in toroidally compactified type II string theory. One can
construct a brane configuration such that the correspond-
ing supergravity solutions describe five-dimensional black
holes. Black holes in these theories can carry both an
electric charge QF and an axion charge QH . The brane
picture gives the entropy in terms of the partition func-
tion W (t) for a gas of QF QH species of massless quanta:
W (t) =

∏
n∈Zp/{0} [1 − exp (−tωn(a,g))]−σ, where σ =

(dimX − p − 1), t = y + 2πix, Re t > 0. For unitary
conformal theories of fixed central charge c the entropy
becomes S(n) = log χ(n) � S0 + A log(S0), where S0 =
2π
√

cn/6, A = −(c + 3)/2. Following [24, 25], we can put
c = 3Q2

F + 6, n = QH , and get the growth of the elliptic
genus (or the degeneracy of BPS solitons) for n = QH � 1.
However, this result is incorrect when the black hole be-
comes massive enough and its Schwarzschild radius ex-
ceeds any microscopic scale such as the compactification
radii [26, 27]. Such models, stemming from string theory,
would therefore be incompatible; in view of the present
result, this might be presented as a useful constraint for
the underlying microscopic field theory.
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